Improvement of Reliability Score for Autocoding and its Implementation in R

uRos2019, 21 May 2019, Bucharest

Yukako Toko¹, Shinya Iijima¹, Mika Sato-Ilic^{1,2} ¹National Statistics Center, Japan ² University of Tsukuba, Japan

Overview - Background

Development of Overlapping Classifier

One Feature into Multiple Classes

Utilized the idea of Fuzzy Partition Entropy

Uncertainty from data Probability Measure

Uncertainty from latent classification structure in data Fuzzy Measure

Reliability Score

Considering Uncertainties from Both Measures Utilize <u>Difference</u> of <u>Measures</u> for Uncertainties

(Y. Toko, S. lijima, M. Sato-Ilic, 2018)

Purpose of This Study

Overlapping Classifier based on Reliability Score

(Y. Toko, S. lijima, M. Sato-Ilic, 2018)

Improvement of the reliability score

Consideration of **Generalized Reliability Score**

Apply **T-norm** in Statistical metric space

Consideration of Frequency of Each Feature in training dataset

Inclusion of the frequency of each feature to the Reliability Score

Overview - System Structure

-> proposed an algorithm that allows the assignment of one feature is classified to multiple classes

Step 1 : Calculate the probability of *j*-th feature (j=1,...,J) to a class k (k=1,...,K) as

$$p_{j\,k} = \frac{n_{j\,k}}{n_j}, \qquad n_j = \sum_{k=1}^K n_{j\,k}$$

 n_{jk} : Number of text descriptions in a class k with j-th feature in the training dataset

- Step 2 : Determine at most \tilde{K} ($\tilde{K} < K$) promising candidate classes for each feature based on $\tilde{p}_{j \ k}$
 - 1. Arrange $\{p_{j1}, \dots, p_{jK}\}$ in descending order and create $\{\tilde{p}_{j1}, \dots, \tilde{p}_{jK}\}$, such as $\tilde{p}_{j1} \ge \dots \ge \tilde{p}_{jK}, j = 1, \dots, J$
 - 2. Create $\left\{ \tilde{\tilde{p}}_{j1}, \cdots, \tilde{\tilde{p}}_{j\tilde{K}_j} \right\}, \ \tilde{K}_j \leq \tilde{K} \leq K$

Note : When there are same values in $\{\tilde{p}_{j1}, \dots, \tilde{p}_{jK}\}$, then we select as many as possible different \tilde{K}_j classes for each feature j

Step 3 : Calculate the **Reliability Score** \bar{p}_{jk}

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \left(1 + \sum_{m=1}^{\tilde{K}_j} \tilde{p}_{jm} \log_K \tilde{\tilde{p}}_{jm} \right), \quad j = 1, \cdots, J, \qquad k = 1, \cdots, \tilde{K}_j$$

When the number of target text descriptions is *T*, and each text description includes h_l ($l = 1, \dots, T$) features, corresponding \bar{p}_{jk} for *l*-th text description can be represented as

$$\bar{p}_{j_lk}$$
, $j_l = 1, \cdots, h_l$, $k = 1, \cdots, \tilde{K}_{j_l}$, $l = 1, \cdots, T$

Reliability score of *j*-th feature included in *l*-th text description to a class *k*

Step 4 : Determine top L ($L \in \{1, ..., \sum_{j_l=1}^{h_l} \widetilde{K}_{j_l}\}$) candidate classes

Degree of Reliability

 \bar{p}_{jk} : Reliability Score of *j*-th feature to a class *k*

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \left(1 + \sum_{m=1}^{\tilde{K}_j} \tilde{\tilde{p}}_{jm} \log_K \tilde{\tilde{p}}_{jm} \right)$$

Probability

Probability of feature *j* to class *k*

Explanation of the uncertainty of the training data

Utilization of the deference of measurements of uncertainty

Fuzzy

Classification status of feature *j* over the \widetilde{K}_i classes

Transformation from $\tilde{\tilde{p}}_{j\,k}$ to classification status of feature j

Method – different fuzzy measurement

Apply another fuzzy measurement for reliability score

Partition coefficient for each feature *j*

$$PC_j = \sum_{k=1}^{K} \tilde{p}_{jk}^2$$
, $j = 1, ..., J$ (Y. Toko, K. Wada, S. lijima, M. Sato-Ilic, 2018)

Classification status of feature *j* over the K classes

Another degree of Reliability

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \sum_{k=1}^{K} \tilde{p}_{jk}^2$$

Partition coefficient

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \left(1 + \sum_{m=1}^{\tilde{K}_j} \tilde{\tilde{p}}_{jm} \log_K \tilde{\tilde{p}}_{jm} \right)$$

Partition entropy

Method – Generalized Reliability Score

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \sum_{k=1}^{K} \tilde{p}_{jk}^2$$

Partition coefficient

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} \left(1 + \sum_{m=1}^{\tilde{K}_j} \tilde{\tilde{p}}_{jm} \log_K \tilde{\tilde{p}}_{jm} \right)$$

Partition entropy

Generalization

$$\bar{p}_{jk} = \mathbf{T}\left(\tilde{\tilde{p}}_{jk}, \sum_{k=1}^{K} \tilde{p}_{jk}^{2}\right)$$

$$\bar{p}_{jk} = \mathbf{T} \left(\tilde{\tilde{p}}_{jk} , 1 + \sum_{m=1}^{\tilde{K}_j} \tilde{\tilde{p}}_{jm} \log_K \tilde{\tilde{p}}_{jm} \right)$$

T(a, b): **T-norm** between a and b

Method – T-norm (Triangular norms)

T : [0,1] × [0,1] → [0,1]∀*a*, *b*, *c*, *d* ∈ [0,1]

(1)
$$0 \le T(a, b) \le 1$$
,
 $T(a, 0) = T(0, b) = 0$
 $T(a, 1) = T(1, a) = a$ (Boundary conditions)

(2) a $\leq c, b \leq d => T(a, b) \leq T(c, d)$ (Monotonicity)

(3) T(a, b) = T(b, a) (Symmetry)

(4) T(T(a,b),c) = T(a,T(b,c)) (Associativity)

(K. Menger, 1942)

Method – Statistical metric space

 $F_{pq}(x) \equiv \Pr\{d_{pq} < x\}$ $\forall p, q, r \in S$

$$d_{pp} = 0 \qquad \leftrightarrow \qquad F_{pp}(x) = 1, \text{ for all } x > 0$$

$$d_{pq} > 0 \ (p \neq q) \qquad \leftrightarrow \qquad F_{pq}(x) < 1, (p \neq q) \text{ for some } x > 0$$

$$d_{pq} = d_{qp} \qquad \leftrightarrow \qquad F_{pq} = F_{qp}$$

$$d_{pr} \le d_{pq} + d_{qr} \qquad \leftrightarrow \qquad F_{pr}(x+y) \ge T(F_{qp}(x), F_{qr}(y))$$

Method – Examples of T-norm

t-norm	t(x,y)
Algebraic Prod.	xy
Hamacher Prod. $(p \ge 0)$	$\frac{xy}{p + (1-p)(x+y - xy)}$
Sin based t-norm	$\frac{2}{\pi}\sin^{-1}\left[\left(\sin\frac{\pi}{2}x+\sin\frac{\pi}{2}y-1\right)\vee 0\right]$
Dombi Prod. $(p > 0)$	$\frac{1}{1 + \sqrt[p]{\left(\frac{1-x}{x}\right)^p + \left(\frac{1-y}{y}\right)^p}}$

Method – Utilization of T-norm for Reliability Score

Algebraic Prod.

Dombi Prod.

(p > 0)

$$\bar{p}_{jk} = \tilde{\tilde{p}}_{jk} * \sum_{k=1}^{K} \tilde{p}_{jk}^2$$

Hamacher Prod. $\bar{p}_{jk} = \frac{\tilde{p}_{jk} \sum_{k=1}^{K} \tilde{p}_{jk}^2}{p + (1-p)(\tilde{\tilde{p}}_{jk} + \sum_{k=1}^{K} \tilde{p}_{jk}^2 - \tilde{\tilde{p}}_{jk} \sum_{k=1}^{K} \tilde{p}_{jk}^2)}$

Sin based t-norm
$$\bar{p}_{jk} = \frac{2}{\pi} sin^{-1} \left[\left(sin \frac{\pi}{2} \tilde{\tilde{p}}_{jk} + sin \frac{\pi}{2} \sum_{k=1}^{K} \tilde{p}_{jk}^2 - 1 \right) \lor 0 \right]$$

$$\bar{p}_{jk} = \frac{1}{1 + \sqrt[p]{\left(\frac{1 - \tilde{\tilde{p}}_{jk}}{\tilde{\tilde{p}}_{jk}}\right)^p + \left(\frac{1 - \sum_{k=1}^K \tilde{p}_{jk}^2}{\sum_{k=1}^K \tilde{p}_{jk}^2}\right)^p}}$$

14

Method – Improved Reliability Score Utilize T-norm and Sigmoid function

Results

Data: Family Income and Expenditure survey, Japan

We used data answered via online survey system

Data size : approx.400,000 instances

approx. 350,000 for Training

40,000 for Evaluation

Results

	Number of total instances	Number of matched instances						
		Partition	Partition	PE	PE	PC	PC	
		Entropy (PE)	Coefficient (PC)	+ Hamacher Prod.	+ Hamacher Prod.	+ Hamacher Prod.	+ Hamacher Prod.	
		+Algebraic Prod.	+Algebraic Prod.	+ Sigmoid func. (a)	+ Sigmoid func. (b)	+ Sigmoid func. (a)	+ Sigmoid func. (b)	
1st candidate	40,000	35,044	35,051	35,064	35,100	35,119	35,134	
2nd candidate		1,649	1,682	1,618	1,589	1,614	1,595	
3rd candidate		536	540	551	541	539	539	
4th candidate		283	293	277	283	291	293	
5th candidate		189	179	189	187	185	188	
Total		37,701	37,745	37,699	37,700	37,748	37,749	

Hamacher Prod.

 $\frac{xy}{p + (1 - p)(x + y - xy)}$

(p = 0.99(PE), 0.7(PC))

Sigmoid func.

a):
$$n_j / \sqrt{1 + n_j^2}$$
 , (**b**): tanh n_j 16

Results

Data: Family Income and Expenditure survey, Japan

Only foodstuff and dining-out data were used We assigned **11** classification codes for this experiment

Data size : 11,000 instances

10,000 for Training 1,000 for Evaluation

Results

	Number of total instances	Number of matched instances					
		T-norm					
		Algebraic	Sin-based	Hamacher	Dombi Drod		
		Prod.	od. T-norm				
1st candidate		854	854	854	854		
2nd candidate	1,000	58	55	58	56		
3rd candidate		20	26	20	23		
Total		932	935	932	933		

Implementation in R

<u>F</u> ile	<u>E</u> dit <u>C</u> ode <u>V</u> iew <u>P</u> lots <u>S</u> ession <u>B</u> uild <u>D</u> ebug <u>P</u> rofile <u>T</u> ools <u>H</u> elp		
• •	🕸 💣 🔹 🔒 🦾 🥕 Go to file/function 🛛 🛗 👻 Addins 👻		
0	earning.r × 🔮 coding.r × 🛛 df × 🔹 dt × 👘 a ×	Er	nvironmen
	🔿 🔊 🔐 Source on Save 🔍 🥕 📲		🗢 🔒 🛙
20			Global Er
21	<pre>L = learning <- function(t,1){ liberry(t-burgers)</pre>		
23	df <- data.frame(t,1)		
24	$df(f_{0}) = (f_{0}) + f_{0} $		
20	δ		
27	<pre>/ for(i in 1:nrow(df)){ dfsfeature[[i]] dfst[i]) </pre>		
Λ2	e implemented this technique in R		
31			
32			
11	ndert Inpix Receiping Kinde, IS UNDER DEVICIONINE	10	\mathbf{T}
	5 (leqtb (date rame(late1=f qtb())) flate as caracte (Peqtb()), the overtor (b)) v v v v v v v v v v v v v v v v v v		
37	7 rm(df) # remove df		
	3 return(freqtbl) 9 }		
4(-	iles Plot
41	2		New Folu
43			
44	5		
46			1
48) 🗊 .RC
49			🗋 🕘 .Rh
) 🧰 .Rp
	1 (Top Level) ¢		🗋 💽 cor
Con	sole Terminal ×		🗋 🧰 dat
			🗋 🕘 dat
RV	ersion 3.5.1 (2018-07-02) "Feather Spray"		🗋 🕘 lea
Cop	yright (C) 2018 The R Foundation for Statistical Computing		🗋 📧 uR/
Pla	ttorm: x86_64-w64-mingw32/x64 (64-bit)		

Summary

Propose Generalized Reliability Score to Improve Handling Ability of the Reliability of Each Data to Each Code

Utilize T-norm in Statistical Metric Space to the Reliability Score

 \rightarrow Generalize the Reliability Score

Inclusion of Frequency of Each Feature to the Reliability Score

Numerical examples show better performance → Improved Classification Accuracy <u>We implemented this technique in R</u> and the R package is under development

Reference

[1] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover Publications, New York (2005).

[2] J. C. Bezdek, J. Keller, R. Krisnapuram, N.R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, Kluwer Academic Publishers, New York (1999).

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York (1981).

[4] K. Menger, Statistical Metrics, Proc. Nat. Acad. of Sci,. U.S.A., 28 (1942), 535-537.

[5] M. Mizumoto, Pictorial Representation of Fuzzy connectives, Part I: Cases of t-Norms, t-Conorms and Averaging Operators, Fuzzy Sets and Systems, 31 (1989), 217-242.

[6] Y. Toko, S. Iijima, M. Sato-Ilic, Overlapping classification for autocoding system, Journal of Romanian Statistical Review, Vol. 4, (2018), 58-73.

[7] Y. Toko, K. Wada, S. Iijima, M. Sato-Ilic, Supervised multiclass classifier for autocoding based on partition coefficient, Intelligent Decision Technologies 2018, Smart Innovation, Systems and Technologies, Springer, Switzerland, Vol. 97, (2018), 54-64.

Thank you !

ytoko@nstac.go.jp