

Statistics Canada, 6 December 2022

Use of R in Official Statistics – uRos 2022 10th International Virtual Conference

Recent and traditional approaches to outlier detection in panel survey data

Outliers in Official Statistics

Outlier

➤ <u>UNECE Glossary</u> (2000): A data value that lies in the tail of the statistical distribution of a set of data values

<u>Underlying assumption</u>: "outliers in the distribution of uncorrected (raw) data are more likely to be incorrect"

- <u>b de Waal et al</u> (2011): A value, or a record, that is not fitted well by a model that is posited for the observed data
 - a single value ⇒ univariate outlier
 - an entire record (or a subset of values), when the values are considered simultaneously ⇒
 multivariate outlier
- Univariate outliers in probabilistic sample surveys:
 - Erroneous value due to a measurement error
 - Non-erroneous value but extreme value (representative or non-representative)

R packages for Outlier Detection in Official Statistics (1/2)

■ Detection of univariate Outliers:

- univOutl (D'Orazio, 2022)
 - Nonparametric: Boxplot based (also with moderate skewness)
 - Data following Gaussian distribution: various options (robust estimation of location and scale)
 - Hidiroglou-Berthelot (1986) approach for ratios $(r_i = y_{t,i}/y_{t-1,i})$ related to longitudinal data (panel surveys)
- <u>extremevalues</u> (van del Loo, 2020) uses statistical test after (robust) estimate of the distribution (Exponential, Weibull, LogNormal, Pareto) of the bulk of data
- SeleMix (Guarnera and Buglielli, 2020) fits mixture of Gaussian models (allows error free predictors)

R packages for Outlier Detection in Official Statistics (2/2)

□ Detection of multivariate Outliers:

- <u>mvoutlier</u> (Filzmoser and Gschwandtner, 2021) distance from the distribution (Gaussian) of the bulk of data (also features for compositional data)
- <u>rrcov</u> (Todorov, 2022), <u>rrcovNA</u> (Todorov, 2020), <u>rrcovHD</u> (Todorov, 2021)
 - distance from the distribution (Gaussian) of the bulk of data (Robust estimation of mean vector and Var-Cov matrix with MVE, MCD, OGK, SD-estimator, ...)
 - robust sparse PCA, robust PLS, robust sparse classification
- <u>SeleMix</u> (Guarnera and Buglielli, 2020) fits mixture of Gaussian models (allows error free predictors)

«Recent» approaches and R packages for Outlier Detection (1/2)

- **Density (distance)-based** nonparametric approaches: many variants of **k-NN** (Ramaswamy et al. 2000; Angiulli and Pizzuti, 2002; …)
 - pros: fully nonparametric; applicable to univariate/multivariate case; assign a unique score for each obs that can be used for ranking potential outliers
 - <u>cons</u>: choice of distance function and k; approx. methods to deal with too many obs. (too large distance matrices)

DDoutlier (Madsen, 2018) many density-based methods

- ☐ Clustering-based approaches; e.g. DBSCAN clustering: outliers are the "noisy" observations not "reachable" by any other observation
 - pros: fully nonparametric; applicable to univariate/multivariate case; direct identification of potential outliers
 - cons: choice of distance function and the distance threshold that determines the "reachability"; choice of k that identifies the set of core observations; no score for ranking observations

dbscan (Hahsler et al., 2019; 2022) the DBSCAN clustering algorithm and facilities to efficiently calculate the *k*-NN distance

«Recent» approaches and R packages for Outlier Detection (2/2)

- Decision-tree algorithms: the isolation tree
 - the more observations show similar *X* values, the longer (more splits) it will take to separate them in small groups (or alone) compared to less occurring *X* values: the **isolation depth** (number of splits needed to isolate a unit) is used for detecting outliers
 - □ Isolation forest: fits an ensemble of isolation trees (Liu et al., 2008 and 2012)
 - <u>pros</u>: fully nonparametric; applicable to univariate/multivariate case; assigns a unique score (from 0 to 1) for each obs that can be used for ranking potential outliers (score>0.5 rule of thumb); tuning parameters are not crucial as in other nonparametric approaches
 - cons: use in the multivariate setting requires variants of the "base" method

<u>solitude</u> (Srikanth, 2021): the "base" isolation forest algorithm<u>isotree</u> (Cortes, 2022): the "base" algorithm and some of its variants for the multivariate setting

An application to panel survey data (1/2)

Input data are the (centered) scores (E_i) calculated in the Hidiroglou-Berthelot approach starting from the ratios $r_i = y_{t_2i}/y_{t_1i}$ (i = 1, 2, ..., m)

$$E_{i} = s_{i} \times \left[\max(y_{t_{1}i}, y_{t_{2}i}) \right]^{U}$$

$$s_{i} = \begin{cases} s_{i} = 1 - \frac{r_{M}}{r_{i}}, & 0 < r_{i} < r_{M} \\ s_{i} = \frac{r_{i}}{r_{M}} - 1, & r_{i} \ge r_{M} \end{cases}$$

 r_M is the median of the ratios (excluding 0 and Inf)

U ($0 \le U \le 1$) controls the role of the magnitude in determining the importance associated to the centered ratios (often U = 0.5)

Example with Data: Univariate Case (1/2)

Bank of Italy, Survey on Household Income and Wealth. Public use anonymized microdata distributed for research purposes; expenditures of 3 804 households in years 2014 and 2016.

Hidiroglou-Berthelot (with C = 7 and A = 0.5); Skewness adjusted boxplot (M = -0.024); isolation forest

Example with Data: Univariate Case (2/2)

Bank of Italy, Survey on Household Income and Wealth. Public use anonymized microdata distributed for research purposes; expenditures of 3 804 households in years 2014 and 2016.

k-NN (*k*=5,10, 15) and DBSCAN (minPts=6 & ε = 30; minPts=11 & ε = 55; minPts=16 & ε = 65)

Red-color points are "noisy" points (outliers) identified by DBSCAN

Example with Data: Bivariate Case (1/3)

R&D performing US manufacturing; <u>production</u> and <u>capital</u> of 509 firms in 1982 and 1983. (https://www.nuffield.ox.ac.uk/users/bond/index.html, See also the R package pder)

Hidiroglou-Berthelot (with C = 7 and A = 0.5); Skewness adjusted boxplot (-0.21; -0.027); isolation forest

Example with Data: Bivariate Case (2/3)

R&D performing US manufacturing; <u>production</u> and <u>capital</u> of 509 firms from 1982 to 1983. (<u>https://www.nuffield.ox.ac.uk/users/bond/index.html</u>, See also the R package <u>pder</u>)

red-color: outliers identified by both the compared methods **green-color**: non-outliers according to both the compared methods

Example with Data: Bivariate Case (3/3)

R&D performing US manufacturing; <u>production</u> and <u>capital</u> of 509 firms from 1982 to 1983. (<u>https://www.nuffield.ox.ac.uk/users/bond/index.html</u>, See also the R package <u>pder</u>)

MD rob (MCD)	SeleMix	Isolation forest scores					
		(0.3, 0.4]	(0.4, 0.5]	(0.5, 0.6]	(0.6, 0.7]	(0.7, 1]	
not outlier	not outlier	380					
	outlier						
outlier	not outlier	9					
	outlier	30	50	17	17	6	

	Isolation forest scores						
DBSCAN	(0.3, 0.4]	(0.4, 0.5]	(0.5, 0.6]	(0.6, 0.7]	(0.7, 1]		
not outlier	419	49	3				
outlier ("noisy")		1	14	17	6		

	DBSCAN		
SeleMix	not outlier	outlier ("noisy")	
not outlier	380	0	
outlier	0	0	
not outlier	9	0	
outlier	82	38	
	outlier not outlier	not SeleMix outlier not outlier 0 not outlier 9	

Conclusions

Nonparametric density(distance)-based (k-NN and its variants):

- Sensitive to the decisions on: scaling of variables, distance function, k
- Produces a score, obs. with highest score are potential outliers (no thresholds, difficult to set)
- Many variants to efficiently compute (approx) distance with very large data sets but limited set of distance functions

DBSCAN clustering

- Sensitive to the decisions on: scaling of variables, distance function, distance threshold & def. of reachability
- No score to rank units
- Tend to identifies relatively few observations that have a high chance of being outliers

Isolation forest

- No need to transform variables
- Relatively few tuning parameters (just number of trees to build when there are relatively few obs.)
- score to rank units lies in the (0,1] interval
- score>0.5 rule-of-thumb often does NOT work
- Need to use extended method in the multivariate setting (the "extended isolation forest" works quite well)

Thank You

Marcello D'Orazio | marcello.dorazio@istat.it

