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Outliers in Official Statistics

[ Outlier

> UNECE Glossary (2000): A data value that lies in the tail of the statistical distribution of a set of
data values

Underlying assumption: “outliers in the distribution of uncorrected (raw) data are more likely to be
incorrect”

> de Waal et al (2011): A value, or a record, that is not fitted well by a model that is posited for
the observed data

= a single value = univariate outlier

= an entire record (or a subset of values), when the values are considered simultaneously =
multivariate outlier

o Univariate outliers in probabilistic sample surveys:
s Erroneous value due to a measurement error

= Non-erroneous value but extreme value (representative or non-representative)
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R packages for Outlier Detection in Official Statistics (1/2)

(] Detection of univariate Outliers:

» univOutl (D’Orazio, 2022)
=  Nonparametric: Boxplot based (also with moderate skewness)
m Data following Gaussian distribution: various options (robust estimation of location and
scale)

= Hidiroglou-Berthelot (1986) approach for ratios (r; = y,;/y,_1;) related to longitudinal
data (panel surveys)

> extremevalues (van del Loo, 2020) uses statistical test after (robust) estimate of the
distribution (Exponential, Weibull, LogNormal, Pareto) of the bulk of data

> SeleMix (Guarnera and Buglielli, 2020) fits mixture of Gaussian models (allows error free
predictors)
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R packages for Outlier Detection in Official Statistics (2/2)

(] Detection of multivariate Outliers:

» mvoutlier (Filzmoser and Gschwandtner, 2021) distance from the distribution (Gaussian) of
the bulk of data (also features for compositional data)

> rrcov (Todorov, 2022), rrcovNA (Todorov, 2020), rrcovHD (Todorov, 2021)

= distance from the distribution (Gaussian) of the bulk of data (Robust estimation of mean
vector and Var-Cov matrix with MVE, MCD, OGK, SD-estimator, ...)

= robust sparse PCA, robust PLS, robust sparse classification

> SeleMix (Guarnera and Buglielli, 2020) fits mixture of Gaussian models (allows error free
predictors)
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«Recent» approaches and R packages for Outlier Detection (1/2)

5

O Density (distance)-based nonparametric approaches: many variants of k-NN (Ramaswamy et
al. 2000; Angiulli and Pizzuti, 2002; ...)

» pros: fully nonparametric; applicable to univariate/multivariate case; assign a unique score for each obs that
can be used for ranking potential outliers

» cons: choice of distance function and k; approx. methods to deal with too many obs. (too large distance
matrices)

DDoutlier (Madsen, 2018) many density-based methods

[ Clustering-based approaches; e.g. DBSCAN clustering: outliers are the “noisy” observations
not “reachable” by any other observation

» pros: fully nonparametric; applicable to univariate/multivariate case; direct identification of potential outliers

» cons: choice of distance function and the distance threshold that determines the “reachability”; choice of k that
identifies the set of core observations; no score for ranking observations

dbscan (Hahsler et al., 2019; 2022) the DBSCAN clustering algorithm and facilities to
efficiently calculate the k-NN distance
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«Recent» approaches and R packages for Outlier Detection (2/2)

 Decision-tree algorithms: the isolation tree

O the more observations show similar X values, the longer (more splits) it will take to separate them in

small groups (or alone) compared to less occurring X values: the isolation depth (number of splits
needed to isolate a unit) is used for detecting outliers

0 Isolation forest: fits an ensemble of isolation trees (Liu et al., 2008 and 2012)

» pros: fully nonparametric; applicable to univariate/multivariate case; assigns a unique score (from 0 to 1) for

each obs that can be used for ranking potential outliers (score>0.5 rule of thumb); tuning parameters are not
crucial as in other nonparametric approaches

» cons: use in the multivariate setting requires variants of the “base” method

solitude (Srikanth, 2021): the “base” isolation forest algorithm
isotree (Cortes, 2022): the “base” algorithm and some of its variants for the multivariate setting
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An application to panel survey data (1/2)

Input data are the (centered) scores (E;) calculated in the Hidiroglou-Berthelot approach starting from the
ratios i = Ytzi/ytli (l =1,2, ,m)

( Ty
51—1—7, O0<nrn<ry
U l
E; = s; % [max(ye i ¥e,i)] Si = 9
’r‘.
S; = —— 1, T =Ty
\ "™

ry IS the median of the ratios (excluding 0 and Inf)

U (0 < U < 1) controls the role of the magnitude in determining the importance associated to the centered
ratios (often U = 0.5)
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Example with Data: Univariate Case (1/2)

Bank of Italy, Survey on Household Income and Wealth. Public use anonymized microdata distributed for
research purposes; expenditures of 3 804 households in years 2014 and 2016.

Hidiroglou-Berthelot (with ¢ = 7 and A = 0.5); Skewness adjusted boxplot (M = —0.024); isolation forest
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Example with Data: Univariate Case (2/2)

Bank of Italy, Survey on Household Income and Wealth. Public use anonymized microdata distributed for
research purposes; expenditures of 3 804 households in years 2014 and 2016.

k-NN (k=5,10, 15) and DBSCAN (minPts=6 & ¢ = 30; minPts=11 & ¢ = 55; minPts=16 & £ = 65)

5-NN distance

Red-color points are “noisy” points (outliers) identified by DBSCAN
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Example with Data: Bivariate Case (1/3)

R&D performing US manufacturing; production and capital of 509 firms in 1982 and 1983.
(https://www.nuffield.ox.ac.uk/users/bond/index.html, See also the R package pder)

Hidiroglou-Berthelot (with ¢ = 7 and A = 0.5); Skewness adjusted boxplot (-0.21; -0.027); isolation forest
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Example with Data: Bivariate Case (2/3)

R&D performing US manufacturing; production and capital of 509 firms from 1982 to 1983.

(https://www.nuffield.ox.ac.uk/users/bond/index.html, See also the R package pder)

Mahalanobis dist. with rob. estimation (MCD)
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red-color: outliers identified by both the compared methods

green-color: non-outliers according to both the compared methods
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Example with Data: Bivariate Case (3/3)

R&D performing US manufacturing; production and capital of 509 firms from 1982 to 1983.
(https://www.nuffield.ox.ac.uk/users/bond/index.html, See also the R package pder)

Isolation forest scores
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Conclusions

Nonparametric density(distance)-based (k-NN Isolation forest
and its variants):

- Sensitive to the decisions on: scaling of variables,
distance function, k

- Produces a score, obs. with highest score are potential
outliers (no thresholds, difficult to set)

- Many variants to efficiently compute (approx) distance
with very large data sets but limited set of distance
functions

DBSCAN clustering

- Sensitive to the decisions on: scaling of variables,

distance function, distance threshold & def. of
reachability

- No score to rank units

- Tend to identifies relatively few observations that have a
high chance of being outliers
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- No need to transform variables

- Relatively few tuning parameters (just number of trees
to build when there are relatively few obs.)

- score to rank units lies in the (0,1] interval
- score>0.5 rule-of-thumb often does NOT work

- Need to use extended method in the multivariate setting
(the “extended isolation forest” works quite well)
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