
Using R for
Web Data Collection

at Scale

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

p e t e r . m e i s s n e r @ v i r t u a l 7 . d e
@ p e t e r l o v e s d a t a

mailto:peter.meissner@virtual7.de

About me:

Social Scientist by Training

IT Guy by Design

R Textbook Author (Munzert et. al)

Long Time R User

R Package Author (wikipediatrend, robotstxt, tabit, …)

Consultant/Data Scientist @ virtual7

Public Sector Client

Customer Story

About Scaling R

Origin Story

{kafkaesque}

R package
https://github.com/petermeissner/kafkaesque

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Mission: Web Scraping at Scale

Public Sector Agency

• High knowledge about data
analytics.

• High demand and expertise for
transparency and correctness of
results.

• A lot of fresh ideas.

• But building and scaling software
systems is not a core skill.

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Mission: Web Scraping at Scale

Build and scale a
software system for
collecting specific
data from internet

• Web search

• Web page rendering

• Data extraction

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Mission: Web Scraping at Scale

… while using R

• Contra R:

• Not known for speed.

• Not known for scalability

• Pro R:

• Elegant

• Robust

• Build in Data Management

• Well Known Quantity for
Customer

Let‘s have a look

at the problem.

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Bott lenecks

0.5 Million

• Searches

7 Million

• Page renderings

7 Million

• Data extractions

Make it work!

Make it right!

Make it fast!

Tasks

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Bott lenecks

0.01 Seconds

• Searches

20 Seconds

• Page renderings

0.2 Seconds

• Data extractions

Make it work!

Make it right!

Make it fast!

Time per Task

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Bott lenecks

1.5 Hours

• Searches

• 0.5 M × 0.01 s

4.5 Years

• Page renderings

• 7 M × 20 s

16 Days

• Data extractions

• 7 M × 0.2 s

Make it work!

Make it right!

Make it fast!

Time for all Tasks
Given a naive approach with a single core machine.

Scaling

is almost always

a variation of a theme known as

„Divide and Conquer“

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Scal ing: Push Approach
Devide

And

Conquer Push Approach

• Single Main application, aka a
monolith, that …

• Keeps track of state (tasks,
workers, …)

• Distributes work and
coordinates workes

Pro

• High flexibility in how to
distribute and coordinate
work.

• Easier to get started.

• No extra bookkeeping
needed.

• Might allow to use shortcuts
to enhance efficiency.

• No extra software
components needed.

Contra

• Coordination and distribution
might become performance
bottleneck.

• Keeping track of status of the
application without fail is
hard.

• Single point of failure.

• Knowledge about compute
topology needed – e.g. server
size, number, workload, …

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Scal ing: Pul l Approach
Devide

And

Conquer Pull Approach

• No single main
application.

• Multiple independent
workers.

• That only know how
to do tasks.

Pro

• Highly scalable.

• Diverse topologies

Contra

• More planning
involved upfront.

• Extra concept for
bookkeeping of
system state needed.

Pull Approach

Based Scaling

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Scal ing: Div ide and Conquer

Tasks

• Search → Render →
Extract → Search →
Render → Extract →
Search → Render →
Extract → Search →
Render → Extract →
Search → Render →
Extract → Search →
Render → Extract

Divide Tasks
Horizontal
(real independence)

• Search → Render →
Extract

• Search → Render →
Extract

• Search → Render →
Extract

Divide Tasks
Vertical
(temporal
independence)

• Search, Search, Search

• Render, Render, Render

• Extract, Extract, Extract

• … + Bookkeeping

Devide

And

Conquer

Architecture

&

Implementation

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Architechture
Modular

Extensible

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Scal ing: Div ide and Conquer
Devide

And

Conquer
• Store

• Task status

• Task relations

• Task durations

Bookkeeping

• Retrieve Tasks

• Execute Tasks

Worker

• Store

• Tasks

Task Queue

• Store

• web pages

Storage

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Architechture
Open Source

All the way down

Scaling?

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Bott lenecks

0.5 Million

• Searches

7 Million

• Page
renderings

7 Million

• Data extractions

Make it work!

Make it right!

Make it fast!

Tasks

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Bott lenecks

1.5 Hours

• Searches

• 0.5 M × 0.01 s

4.5 Years

• Page renderings

• 7 M × 20 s

16 Days

• Data extractions

• 7 M × 0.2 s

Make it work!

Make it right!

Make it fast!

Time for all Tasks
Given a naive approach with a single core machine.

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Done

1 Desktop PC

6 CPUs
64 GB RAM

1 MB/s Network

Everything done

within 55 days

For about
1’500 €uro

once

Make it work!

Make it right!

Make it fast!

Task Completed

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Done

AWS EC2

48 vCPUs
384 GB RAM

6 MB/s Network

Everything done

within 10 days

For about
4’000 €uro
per month

Make it work!

Make it right!

Make it fast!

Task Completed

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

Chal lenge: Done

The Sky is the limit.
System can scale
across clusters.

Make it work!

Make it right!

Make it fast!

Task Completed

{kafkaesque}

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

We open sourced an
improved version of the
R-Kafka bindings

R Speaks Kafka?

It did not really – so far.

But it does so now. Kafka is written in Java

{rJava} for R – Java bindings

• Data: R to Java

• Data: Java to R

• R: execute Java code within JVM

{kafkaesque}

• Our experience from customer work

• Give back to community

• Access to most of admin, consumer and producer APIs

• "User friendly Big Data for mere mortals"

• https://github.com/petermeissner/kafkaesque

End

Questions & Comments

Technical Details

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

• R scripts

• Can be spawned and stopped – scaled
up/down while system is running

• Infinite loops that …
• Ask for new tasks

• Execute tasks

• Encapsulate task execution into try-catch-
blocks

• Report start, end and error status to book
keeping

What are Workers?

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

• In fact propably any message queue that can
run as a standalone service could have done.

• Kafka has some nice properties though.
• Scalable.

• Message retention.

• Kafka is very much build around the idea that
consumers pull messages which in turn is very
much in line with our own model of scalability.

• We had a rudimentary package that proofed
that R-bindings for Kafka worked at some
earlier point in time.

Why use Kafka?

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

• Via indexing and joins it‘s easy to get various
information or do analytics.

Why use Relat ionalDB for
Bookkeeping?

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

• Open Source

• well known

• performant

• industry standard

Why use PostgreSQL?

W I R G E S T A L T E N D I E D I G I T A L E Z U K U N F T D E U T S C H L A N D S .

• No.

• Except there are other languages which would
have come with Kafka bindings already
available.

• Otherwise R does not pose any problem here:
• Its production ready.

• Predictable.

• Easy to package and deploy.

• Performance: The main time consuming task
is web page rendering that is done not within
R but within headless browsers.

• Good data manage capabilities.

• Good data base conectivity.

Are there any reasons not to
use R?

