

Variance estimation with the R package gustave: the experience of STATEC

Claude LAMBORAY, Dmitri LEBRUN, Guillaume OSIER

uRos2023, Bucarest

12-14 December 2023

1. Variance estimation methodology for EU-SILC

- 2. Implementation with R package Gustave
- 3. Preliminary results (EU-SILC 2022)

Variance estimation methodology for EU-SILC

EU-SILC

- EU-SILC : European Statistics on Income and Living Conditions
- Reference source at EU level for comparable microdata on income and living conditions across countries
- Used to produce key policy indicators on income poverty, inequality and social exclusion
- Strong legal basis at EU level (IESS Framework Regulation on Social Statistics) setting minimum precision targets

page

- Complex design features:
 - Rotating panel structure
 - Unequal selection probabilities
 - Unit non-response and attrition
 - Calibration to external data sources
 - Both cross-sectional and longitudinal indicators
 - Both linear and non-linear indicators

STΛT

The need to calculate standard error estimates (IESS Regulation)

- Variance estimates are key indicators for assessing the quality of survey data
- According to the IESS Regulation at EU level, a minimum level of precision must be achieved for EU-SILC indicators

ANNEX II

Precision requirements

- 1. Precision requirements for all data sets are expressed in standard errors and are defined as continuous functions of the actual estimates and of the size of the statistical population in a country or in a NUTS 2 region.
- 2. The estimated standard error of a particular estimate $\widehat{SE}(\hat{p})$ shall not be bigger than the following amount:

3. The function f(N) shall have the form of $f(N)=a\sqrt{N+b}$

• Therefore, standard errors must be calculated using an approach that is both theoretically justified sound and easy to implement using standard statistical software

Variance decomposition (3-phase sampling)

$$\begin{split} \widehat{V}(\widehat{Y}) &= \widehat{V}\left(\sum_{i \in s_3} \frac{y_i}{\pi_i p_i r_i}\right) \\ &= \sum_{\substack{i \in s_3 \\ j \in s_3}} \frac{A_{ij}}{\pi_{ij} \pi_i \pi_j} \times \frac{y_i}{p_i r_i} \times \frac{y_j}{p_j r_j} + \sum_{\substack{i \in s_3 \\ i \in s_3}} \frac{1 - \pi_i}{\pi_i^2} \times \left(\frac{1}{p_i r_i} - \frac{1}{p_i^2 r_i^2}\right) \times y_i^2 \quad \text{Initial Sampling} \\ &+ \sum_{\substack{i \in s_3 \\ j \in s_3}} \frac{y_i^2}{\pi_i^2} \times \frac{1 - p_i}{p_i^2} \times \frac{1}{r_i} \quad \text{Unit non-response (Phase 2)} \\ &+ \sum_{\substack{i \in s_3 \\ j \in s_3}} \frac{y_i^2}{\pi_i^2 p_i^2} \times \frac{1 - r_i}{r_i^2} \quad \text{Attrition (Phase 3)} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \times \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \times \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \times \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \times \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}} \frac{p_i^2}{\pi_j^2} \\ &= \sum_{\substack{j \in s_3 \\ j \in s_3}}$$

Additional indicators

- <u>Standard error (absolute)</u>: $\hat{\sigma}(\hat{Y}) = \sqrt{\hat{V}(\hat{Y})}$
- <u>Standard error (relative)</u>: $\widehat{CV}(\widehat{Y}) = \sqrt{\widehat{V}(\widehat{Y})/\widehat{Y}}$
- Margin of error at 95% confidence level (absolute): $\widehat{AME}(\widehat{Y}) = 1.96 \sqrt{\widehat{V}(\widehat{Y})}$
- Margin of error at 95% confidence level (relative): $\widehat{RME}(\widehat{Y}) = 1.96 \sqrt{\widehat{V}(\widehat{Y})/\widehat{Y}}$
- <u>Design effect</u>: ratio of the variance under the actual sampling plan to that under simple random sampling of same size

$$Deff = \frac{\widehat{V}(\widehat{Y})}{\widehat{V}_{SRS}(\widehat{Y}_{SRS})} = \frac{\widehat{V}(\widehat{Y})}{\frac{1}{r} \times \widehat{N}^2 \times \left(1 - \frac{r-1}{\widehat{N}-1}\right) \times \left(\sum_{i \in S_3} \omega_i (y_i - \overline{y}_w)^2 / \sum_{i \in S_3} \omega_i\right)} \Big|_{8}^{page}$$

Application in gustave

R package gustave

- Gustave: a User-oriented Statistical Toolkit for Analytical Variance Estimation
- R package developed at INSEE <u>https://github.com/InseeFr/gustave</u>
- We decided to work with this package because:
 - Analytical variance methods are typically used at STATEC.
 - The package is designed to separate the technical (methodological) part from the user part.
 - The package is very flexible, allowing to take into account the characteristics of each survey.
 - The package facilitates some degree of standardization.
 - The package is used within an official statistics environment.

Getting started with qvar

- gustave contains a ready-to-be-used function *qvar* that allows to obtain a variance wrapper for some common situations:
 - Stratified Simple Random Sampling
 - Non-response correction
 - Calibration
- The function *qvar* creates a **variance** wrapper that can be called by the end user

```
precision_Crime_cal <- qvar(</pre>
#data set
data=crimedb2,
#disseimantion weight
dissemination_dummy = "resp",
#dissemination weight
dissemination_weight = "r2_w",
#identification variable
id = "ID".
#sampling weight
sampling_weight = "w_sample",
#weight after non-response correction
nrc_weight = "w_nrc",
#response dummy
response_dummy = "resp",
#weight after calibration
calibration_weight = "r2_w",
#calibration variables
calibration_var = unlist(VecteurGustave).
#define a variance wrapper
define = TRUE
```

Application of gustave at STATEC

Variance wrapper

The variance wrapper requires:

- A variance function;
- The technical data (weights, id, calibration variables, etc.);
- The unit identifier;
- The final weight used for point estimation;
- The name of the variable that identifies the units.

tech	nical_data = technic	al data SILC.
refe	erence_id = technical	_data_SILC\$data\$id_hfile,
refe	erence_weight = techn	ical_data_SILC\$data\$weight_fina
defa	wlt_id = 'id_hfile'	

Variance function

- The variance estimation methodology is specified in the variance function.
- The variance function returns a variance for a TOTAL.
- We can use supporting functions
 (var_pois, var_DT, ...) available in gustave to estimate the variances
- In addition to the variance, we decided
- to calculate other outputs:
 - Design effect (eds);
 - Sampling variance (var1); Non-response variance (var2); Attrition variance (var3).

Statistics wrapper

- A statistic wrapper returns the point estimator and the corresponding linearized variable.
- The display (output of the variance wrapper) is also managed in the statistics wrapper.
- We constructed additional statistics wrappers for:
 - Quantile
 - ARPR
 - RMPG
 - Gini
 - S80/S20 quintile share ratio

```
RATIO_STATEC <- gustave:::define_statistic_wrapper(</pre>
statistic_function = function(num, denom, weight){
  na <- is.na(num) | is.na(denom)</pre>
  est_num <- sum(num * weight, na.rm = TRUE)</pre>
  est_denom <- sum(denom * weight, na.rm = TRUE)
  point <- est_num / est_denom
  lin <- (num - point * denom ) / est_denom
  list(point = point.
       lin = lin.
       n = sum(!na),
       est_num = est_num,
       est_denom = est_denom)
},
arg_type = list(data = c("num", "denom"),
                weight = "weight"),
display_function = STATEC_standard_display_function
```

Variance estimation

• The variance wrapper can be called by specifying the **data set** and the **variable** of interest included in the corresponding statistics wrapper

> Calcul_variance_SILC(Data_SILC_Gustave, MEAN_STATEC(HY020)) moe relative moe call n est variance std CV lower upper 1 MEAN_STATEC(y = HY020) 3911 78976.99 3075589 1753.736 2.220565 75539.73 82414.25 3437.259 4.352 effet_de_sondage var_tirage_share var_nr_share var_attr_share 2.083 1 13.833 68.938 17.229

• The variance wrapper conveniently handles **domain estimation**.

> Ca	alcul_variance_SIL	_C(Data_SILC_Gusta	ave, MEA	N_STATEC	(HY020), H	oy=hs031)				
		call b	oy n	est	variance	std	CV	lower	upper	moe
1 ME	$AN_STATEC(y = HY)$	020, by = hs031)	1 62	54188.44	39559210	6289.611	11.606923	41861.03	66515.86	12327.412
2 ME	$AN_STATEC(y = HY)$	020, by = hs031)	2 101	54297.85	44503374	6671.085	12.286095	41222.76	67372.93	13075.086
3 ME	$AN_STATEC(y = HY)$	020, by = hs031)	3 3709	80726.70	3419978	1849.318	2.290838	77102.10	84351.30	3624.597
relative_moe effet_de_sondage var_tirage_share var_nr_share var_attr_share										
1	22.749	1.551	16.	374	79.744	3	3.883			
2	24.080	1.645	15.	381	71.658	12	2.961			
3	4.490	0.456	13.	790	68.458	17	.753			

Preliminary results (EU-SILC 2022)

Preliminary results (SILC 2022)

	Value	Standard error (points of unit value)	CV (%)	Absolut e margin of error (points of unit value)	Relative margin of error (%)	Deff
60% of median income (<i>at-risk-of-poverty line</i>) – EUR/month	2265	42	1.9	83	3.7	1.59
Share of individuals below the poverty line (<i>at-risk-of-poverty rate</i>) – %	17.3	1.1	6.4	2.2	12.7	1.58
Relative difference between the poverty line and the median income of the poor (<i>relative median at-risk-of-poverty gap</i>) – %	18.2	1.9	10.5	3.7	20.4	1.62
Mean income of the upper income quintile to the median income of the lower income quintile (<i>income quintile share ratio</i>)	4.5	0.5	10.3	0.9	20.2	1.67
Gini coefficient (%)	29.1	1.4	4.9	2.8	9.5	4.5
STATEC					page	

Conclusion and way forward

- Integrated approach that yields variance estimates taking into account the EU-SILC complex design features
- The R package Gustave provides both the theoretical foundations and the flexibility in implementation thanks to the statistics and variance wrappers; however some pre-processing remains necessary
- Work in progress
 - Further validation of results
 - Effect of calibration weighting on variance
 - Application to other surveys (e.g. Labour Force Survey, other business and household surveys etc.)

STATE Inclusion of other indicators (longitudinal indicators and indicators of net changes)