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Introduction

Small area typically denotes any domain for which the specific
sample is not large enough to support precise direct estimates.

Small Area Estimation (SAE) is a series of methods to
estimate indicators of small domains with applications in
many different types of surveys.

Data requirements:

Survey data: available for the target variable Y and for the
auxiliary variable X, related to Y.
Census/Administrative data: available for X but not for Y.

Challenges in business surveys:

Likely to include outliers.
Skewness and variability of variables.
Estimates of the quality of point estimates (MSE) for proper
inference.
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Research questions

What is the role of random effects in machine learning?

What is the role of data transformations?

Can machine learning improve SAE compared to linear
models?

Can machine learning algorithms offer protection under
misspecification of linear-type models?
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Mixed Effects Random Forest (MERF)

Notation

Sample-size n; areas i = 1, ...,D; individuals j ; covariates xij .

We assume that yij follows the following general model:

yij = f (xij) + vi + ϵij , ϵij∼N(0, σ2
ϵ ) and vi∼N(0, σ2

v )

f (xij) is a random forest.

Fitting algorithm similar to EM algorithm.

Krennmair, P. & Schmid, T. (2023). Flexible domain prediction using mixed effects random

forests. Journal of the Royal Statistical Society Series C, 71(5):1865-1894.

Krennmair, P., Tzavidis, N., Schmid, T. & Wurz, N. (2024). On the use of random forests and

mixed effects random forests for small area estimation of general parameters (working paper).
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Fitting algorithm (“naive”version)

1. Set l = 0 and the random effects v̂(0) to zero.

2. Update f (xij)(l).
2.1 Set l = l + 1.
2.2 ỹij,(l) = yij − v̂i,(l−1)

2.3 Estimate f̂ (xij )(l) using a random forest with dependent variable ỹij,(l) and
covariates xij .

2.4 Compute OOB predictions, f̂ (xij )(l).

2.5 Compute OOB residuals rij = yij,(l) − f̂ (xij )(l).

3. A naive estimator of the residual variance is given by

σ̂2
Naive = n−1

∑
i

∑
j

(
yij − f̂ (xij)(l)

)2

.

4. σ̂2
Naive can be decomposed into different sources under the assumed

model.

5. Update variance components and v by fitting an empty random
intercepts model with rij as the outcome.

6. Repeat steps 2-5 until convergence.
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Fitting algorithm (modified version)

1. σ̂2
Naive overestimates the residual variance (Mendez & Lohr, 2011).

2. Implement step 2 as before.

3. Correct the bias of σ̂2
Naive by using a residual-based non-parametric

bootstrap bias correction. Compute the bias correction term K̂ .
Compute σ̂2

bc = σ̂2
Naive − K̂ .

4. Compute rescaled residuals r rsij =
rij

σ̂Naive
σ̂bc to match the corrected

variance.

5. Update variance components and v by estimating an empty random
intercepts model with r rsij as the outcome.

6. Repeat steps 3-6 until convergence.

Mendez, G., & Lohr, S. (2011). Estimating residual variance in random forest regression.

Computational Statistics and Data Analysis, 55:2937-2950.
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Application

Retail businesses in Italy (excluding petrol stations).

Population size N = 71, 568.

Y: revenue of 2020.

X: revenue of 2018.

sc: size class, based on the working persons (1, 2-4, 5-9,
10-19, 20-49).

wp: the number of working persons.

ind: industrial classification (36 industry groups).

Stratified design with Neyman allocation.

Sample size n = 5, 000.

Sample sizes per industry group varying from 12 to 905.
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Results - Mean revenue of 2020

EBLUP: Y = X+ wp+ wp× X [var = f (wp)]

EBP: log(Y) = log(X) + wp+ sc+ wp× log(X)

MERF: log(Y) = X+ wp+ sc
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Figure: The true values and the values of estimators by industry group.
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Results - Absolute bias & MSE
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Figure: Absolute bias and MSE by industry group; the cross shows the
mean values.
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Uncertainty estimation

1. Compute marginal OOB residuals rij = yij − f̂ (xij ).

2. Compute level 2 residuals scaled to estimated level 2 variance

r̄
c(2)
i =

1

ni

ni∑
j=1

rij

3. Compute level 1 residuals r
c(1)
ij = rij − r̄

c(2)
i , scaled to level 1 estimated variance.

4. For b = 1, ...,B:

4.1 Sample from the scaled and centred level 1 and level 2 residuals:

r
(b)
ij = srswr(r

c(1)
ij ,N) and r

(b)
i = srswr(r̄

c(2)
i ,D).

4.2 Construct the bootstrap population under the MERF

y
(b)
ij = f̂ (xij ) + r

(b)
i + r

(b)
ij .

4.3 Compute the bootstrap population parameter of interest θ
(b)
i .

4.4 From each bootstrap population, draw a bootstrap sample, obtain θ̂
(b)
i .

5. Compute MSE estimator

M̂SE i = B−1
B∑

b=1

(
θ̂
(b)
i − θ

(b)
i

)2
.
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Results - MSE for EBP
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Figure: Bootstrap MSE and empirical MSE for EBP with 100 Monte
Carlo simulations and 100 bootstrap samples.

11 / 14



Results - MSE for MERF
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Figure: Bootstrap MSE and empirical MSE for MERF with 100 Monte
Carlo simulations and 100 bootstrap samples.
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Discussion

Random effects are central to SAE and play an important role
in machine learning.

The usefullness of data transformations.

MERFs are competitive compared to linear models, offering
protection under misspecification.

Alternatives to random effects specification?

Consider alternative estimation strategies for random effects,
more in line with algorithmic culture (Breiman, 2001).

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by

the author). Statistical Science, 16(3):199-231.
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Thank you for your attention.
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