Supervised statistical (machine) learning for domain estimation with business survey data

Vasilis Chasiotis¹, Nikos Tzavidis², Chiara Bocci³, Paul Smith²

¹Department of Statistics, AUEB, GR
 ²Department of Social Statistics and Demography, and Southampton Statistical Sciences Research Institute, University of Southampton, UK
 ³Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, IT

12th International Conference: The Use of $\tt R$ in Official Statistics (uRos2024)

Piraeus, November 27-29, 2024

Introduction

- Small area typically denotes any domain for which the specific sample is not large enough to support precise direct estimates.
- Small Area Estimation (SAE) is a series of methods to estimate indicators of small domains with applications in many different types of surveys.
- Data requirements:
 - Survey data: available for the target variable Y and for the auxiliary variable X, related to Y.
 - Census/Administrative data: available for *X* but not for *Y*.
- Challenges in business surveys:
 - Likely to include outliers.
 - Skewness and variability of variables.
 - Estimates of the quality of point estimates (MSE) for proper inference.

Research questions

- What is the role of random effects in machine learning?
- What is the role of data transformations?
- Can machine learning improve SAE compared to linear models?
- Can machine learning algorithms offer protection under misspecification of linear-type models?

Mixed Effects Random Forest (MERF)

Notation

- Sample-size n; areas i = 1, ..., D; individuals j; covariates \mathbf{x}_{ij} .
- We assume that y_{ij} follows the following general model:

$$y_{ij} = f(\mathbf{x}_{ij}) + v_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \quad \text{and} \quad v_i \sim N(0, \sigma_{\nu}^2)$$

- $f(\mathbf{x}_{ij})$ is a random forest.
- Fitting algorithm similar to EM algorithm.

Krennmair, P. & Schmid, T. (2023). Flexible domain prediction using mixed effects random forests. Journal of the Royal Statistical Society Series C, 71(5):1865-1894.

Krennmair, P., Tzavidis, N., Schmid, T. & Wurz, N. (2024). On the use of random forests and mixed effects random forests for small area estimation of general parameters (working paper).

Fitting algorithm ("naive" version)

- 1. Set l=0 and the random effects $\hat{v}_{(0)}$ to zero.
- 2. Update $f(\mathbf{x}_{ij})_{(l)}$.
 - 2.1 Set l = l + 1.
 - 2.2 $\tilde{y}_{ij,(l)} = y_{ij} \hat{v}_{i,(l-1)}$
 - 2.3 Estimate $\hat{f}(\mathbf{x}_{ij})_{(l)}$ using a random forest with dependent variable $\tilde{y}_{ij,(l)}$ and covariates \mathbf{x}_{ii} .
 - 2.4 Compute OOB predictions, $\hat{f}(\mathbf{x}_{ij})_{(l)}$.
 - 2.5 Compute OOB residuals $r_{ij} = y_{ij,(l)} \hat{f}(\mathbf{x}_{ij})_{(l)}$.
- 3. A naive estimator of the residual variance is given by

$$\hat{\sigma}_{Naive}^2 = n^{-1} \sum_{i} \sum_{j} \left(y_{ij} - \hat{f}(\mathbf{x}_{ij})_{(l)} \right)^2.$$

- 4. $\hat{\sigma}^2_{Naive}$ can be decomposed into different sources under the assumed model.
- 5. Update variance components and v by fitting an empty random intercepts model with r_{ij} as the outcome.
- 6. Repeat steps 2-5 until convergence.

Fitting algorithm (modified version)

- 1. $\hat{\sigma}_{Naive}^2$ overestimates the residual variance (Mendez & Lohr, 2011).
- 2. Implement step 2 as before.
- 3. Correct the bias of $\hat{\sigma}^2_{Naive}$ by using a residual-based non-parametric bootstrap bias correction. Compute the bias correction term \widehat{K} . Compute $\hat{\sigma}^2_{bc} = \hat{\sigma}^2_{Naive} \widehat{K}$.
- 4. Compute rescaled residuals $r_{ij}^{rs} = \frac{r_{ij}}{\hat{\sigma}_{Naive}} \hat{\sigma}_{bc}$ to match the corrected variance.
- 5. Update variance components and v by estimating an empty random intercepts model with r_{ii}^{rs} as the outcome.
- 6. Repeat steps 3-6 until convergence.

Application

- Retail businesses in Italy (excluding petrol stations).
- Population size N = 71,568.
- Y: revenue of 2020.
- X: revenue of 2018.
- sc: size class, based on the working persons (1, 2-4, 5-9, 10-19, 20-49).
- wp: the number of working persons.
- ind: industrial classification (36 industry groups).
- Stratified design with Neyman allocation.
- Sample size n = 5,000.
- Sample sizes per industry group varying from 12 to 905.

Results - Mean revenue of 2020

EBLUP:
$$Y = X + wp + wp \times X$$
 [var = $f(wp)$]
EBP: log(Y) = log(X) + wp + sc + wp × log(X)
MERF: log(Y) = X + wp + sc

Figure: The true values and the values of estimators by industry group.

Results - Absolute bias & MSE

Figure: Absolute bias and MSE by industry group; the cross shows the mean values.

Uncertainty estimation

- 1. Compute marginal OOB residuals $r_{ij} = y_{ij} \hat{f}(\mathbf{x}_{ij})$.
- 2. Compute level 2 residuals scaled to estimated level 2 variance

$$\bar{r}_i^{c(2)} = \frac{1}{n_i} \sum_{j=1}^{n_i} r_{ij}$$

- 3. Compute level 1 residuals $r_{ij}^{c(1)} = r_{ij} \bar{r}_i^{c(2)}$, scaled to level 1 estimated variance.
- 4. For b = 1, ..., B:
 - 4.1 Sample from the scaled and centred level 1 and level 2 residuals:

$$r_{ij}^{(b)} = \operatorname{srswr}(r_{ij}^{c(1)}, N)$$
 and $r_i^{(b)} = \operatorname{srswr}(\bar{r}_i^{c(2)}, D)$.

- 4.2 Construct the bootstrap population under the MERF $y_{ii}^{(b)} = \hat{f}(\mathbf{x}_{ii}) + r_{i}^{(b)} + r_{ii}^{(b)}$.
- 4.3 Compute the bootstrap population parameter of interest $\theta_i^{(b)}$.
- 4.4 From each bootstrap population, draw a bootstrap sample, obtain $\hat{\theta}_i^{(b)}$.
- 5. Compute MSE estimator

$$\widehat{MSE}_{i} = B^{-1} \sum_{b=1}^{B} \left(\hat{\theta}_{i}^{(b)} - \theta_{i}^{(b)} \right)^{2}.$$

Results - MSE for EBP

Figure: Bootstrap MSE and empirical MSE for EBP with 100 Monte Carlo simulations and 100 bootstrap samples.

Results - MSE for MERF

Figure: Bootstrap MSE and empirical MSE for MERF with 100 Monte Carlo simulations and 100 bootstrap samples.

Discussion

- Random effects are central to SAE and play an important role in machine learning.
- The usefullness of data transformations.
- MERFs are competitive compared to linear models, offering protection under misspecification.
- Alternatives to random effects specification?
- Consider alternative estimation strategies for random effects, more in line with algorithmic culture (Breiman, 2001).

Thank you for your attention.