
» 1

«

«
Semantic address matching using Keras for R

uRos2024, 27-29 November 2024

Paula Cruz *,** | Leonardo Vanneschi ** | Marco Painho **| Filipa Ribeiro *

*Statistics Portugal
**NOVA IMS

» 2

1. Introduction

2. Proposed approach

3. Preliminary results

4. Conclusions and future work

Agenda

» 3

1. Introduction: Background

National Buildings and
Dwellings Database with

6 million registers
(Census-based)

Current parsing and
matching procedures
need improvement

Potential for regular
updates with

administrative data

Acceptance of
probabilistic, partial

matches

Data privacy

» 4

1. Introduction: Standard approach (text similarity)

(ORACLE) methods based on string similarity (Levenshtein, Jaro-Winkler), both at
the level of the full address and at the level of address components.

Preprocessing: capitalization, removal of extra blank spaces, special symbols, and
normalization.

Partitioning into components: street type, street name, building type and name,
door number, floor, and side.

Initially, the partitioning was done using specific software (QualityStage), but it
was later replaced by the use of regular expressions in Oracle (REGEXP) as well as
the Libpostal software (NLP + open data).

Minimum threshold of 79% to classify a record association as a match.

Limitations:

 Below the defined
threshold, addresses
with significant
variations in spelling
could still be
matches

 Above the
threshold, matching
addresses with
differences at the
component level
(e.g., door number,
unit level) are
difficult to capture

» 5

2. Proposed approach: Natural language processing (NLP)

Source: Duarte, A. V., & Oliveira, A. L. (2023)

 In general, deep learning methods achieve a
higher matching accuracy than traditional
text-matching models (Cruz et al. 2021).

 Until 2017, bidirectional RNNs (in particular,
bidirectional LSTMs) were widely used for
sequence modeling, due to their ability to
capture context in both directions.

 Today, transformers, relying on self-
attention mechanisms, are the dominant
choice for sequence modeling, namely
pretrained compact language models such
as DistilBERT.

» 6

2. Proposed approach: Training dataset generation

Synthetic labeled data
+ real labeled data

25,000 Matches +

25,000 Non Matches

(Lin et al, 2020)

Final

Sample

50,000 registers

» 7

2. Proposed approach: Implementation in R

reticulate: R Interface for Python
reticulate::virtualenv_create("r-tensorflow", python = "python3.9")

tensorflow: Machine learning platform
tensorflow::install_tensorflow(envname = "r-tensorflow")

keras: Deep learning API
keras::install_keras(envname = "r-tensorflow")

tfdatasets: TensorFlow data pipelines
caret: Machine learning toolkit
transformers: NLP transformer models

Main libraries used

» 8

2. Proposed approach: Implementation in R

Download DistilBERT model files for local use and set up paths
pretrained_path <- “URos2024/NLP/distilbert“
config_path <- file.path(pretrained_path, "config.json")
weights_path <- file.path(pretrained_path, "pytorch_model.bin")
vocab_path <- file.path(pretrained_path, "tokenizer")

tokenizer <- transformers$DistilBertTokenizerFast$from_pretrained(vocab_path)
distilbert_model <- transformers$TFAutoModel$from_pretrained(pretrained_path)

Or Load DistilBERT's tokenizer and model
tokenizer <- transformers$DistilBertTokenizerFast$from_pretrained("distilbert-
base-uncased")
distilbert_model <- transformers$TFAutoModel$from_pretrained("distilbert-base-
uncased")

(Down)loading of distilBERT (Hugging Face’s)

» 9

2. Proposed approach: Implementation in R

#Load data
data <- read.csv("URos2024/NLP/datasets/sample_50k.csv", sep=";", header=TRUE,
encoding = "UTF-8")

Shuffle and clean data
data <- data[sample(1:nrow(data)),]
data <- data %>%

mutate(
str_replace_all(address1, "[^\\w\\s]", "") %>% # Special characters
str_replace_all("\\s{2,}", " "), # Extra spaces
str_replace_all(address2, "[^\\w\\s]", "") %>%
str_replace_all("\\s{2,}", " ")
)

Load and prepare sample data

» 10

2. Proposed approach: Implementation in R

sequence_length <- 50 # Sequence length for tokenization
set.seed(123) # For reproducibility

preprocess_dataset_with_bert <- function(df) {

address1_encodings <- tokenizer(
as.character(df[['address1']]),
truncation = TRUE,
padding = "max_length",
max_length = as.integer(sequence_length),
return_tensors = "tf"

)

Tokenize data

» 11

2. Proposed approach: Implementation in R

address2_encodings <- tokenizer(
as.character(df[['address2']]),
truncation = TRUE,
padding = "max_length",
max_length = as.integer(sequence_length),
return_tensors = "tf"

)
labels <- df[['match']]
list(

list(address1_encodings$input_ids, address1_encodings$attention_mask,
address2_encodings$input_ids, address2_encodings$attention_mask),

labels
)

}

Tokenize data

» 12

2. Proposed approach: Implementation in R

Split data into train, validation, and test sets

train_indices <- sample(1:nrow(df), size = floor(0.8 * nrow(df)))
remaining_indices <- setdiff(1:nrow(df), train_indices)
valid_indices <- sample(remaining_indices, size = floor(0.5 *
length(remaining_indices)))
test_indices <- setdiff(remaining_indices, valid_indices)

train_df <- df[train_indices,]
valid_df <- df[valid_indices,]
test_df <- df[test_indices,]

Preprocess datasets
train_data <- preprocess_dataset_with_bert(train_df)
valid_data <- preprocess_dataset_with_bert(valid_df)
test_data <- preprocess_dataset_with_bert(test_df)

» 13

2. Proposed approach: Implementation in R

First tower
inputs_1 <- layer_input(shape = c(sequence_length), dtype = "int32", name =
"address1_input_ids")
attention_mask_1 <- layer_input(shape = c(sequence_length), dtype = "int32", name
= "address1_attention_mask")
distilbert_output_1 <- distilbert_model(list(inputs_1,
attention_mask_1))$last_hidden_state %>% layer_global_average_pooling_1d()

Second tower
inputs_2 <- layer_input(shape = c(sequence_length), dtype = "int32", name =
"address2_input_ids")
attention_mask_2 <- layer_input(shape = c(sequence_length), dtype = "int32", name
= "address2_attention_mask")
distilbert_output_2 <- distilbert_model(list(inputs_2,
attention_mask_2))$last_hidden_state %>% layer_global_average_pooling_1d()

Define the Siamese network

» 14

2. Proposed approach: Implementation in R

Compute similarity measure (absolute distance)
layer_similarity <- layer_lambda(

f = function(tensors) k_abs(tensors[[1]] - tensors[[2]]),
output_shape = function(input_shape) input_shape[[1]])

similarity_output <- layer_similarity(list(distilbert_output_1,
distilbert_output_2))

Final layer for classification
outputs <- similarity_output %>%
layer_dense(units = 128, activation = "relu", kernel_regularizer =
regularizer_l2(0.01)) %>% # Hidden dense layer
layer_dense(1, activation = "sigmoid") # Final output layer

Compute similarity measure and define classification layer

» 15

2. Proposed approach: Implementation in R

Compile the model
model <- keras_model(
inputs = list(inputs_1, attention_mask_1, inputs_2, attention_mask_2),
outputs = outputs
)%>%
compile(
optimizer = optimizer_adam(learning_rate = 1e-4),loss = "binary_crossentropy",
metrics = "accuracy“)

Learning rate reduction and early stopping
learning_rate_reduction <- callback_reduce_lr_on_plateau(
monitor = "val_loss", patience = 3, verbose = 1, factor = 0.3, min_lr = 1e-8)
callback_list <- list(callback_early_stopping(restore_best_weights = TRUE,
patience = 2, min_delta = 0.001, verbose = 1),
learning_rate_reduction)

Compile the model

» 16

2. Proposed approach: Implementation in R

summary(model)#Total params: 66,461,441 (253.53 MB)

Train the model
history <- model %>% fit(x = train_data[[1]], y = train_data[[2]], validation_data
= list(valid_data[[1]], valid_data[[2]]), epochs = 5, batch_size = 32,
callbacks = callback_list, use_multiprocessing = TRUE, workers = 4)

Plot training history
plot(history)

Predict on test data
predictions_probs <- model %>% predict(test_data[[1]])
predictions <- ifelse(predictions_probs > 0.5, 1, 0)
true_labels <- test_data[[2]]
conf_matrix <- table(Predicted = predictions, Actual = true_labels)

Train and evaluate the model

» 17

3. Preliminary results

Available, preliminary results in terms of accuracy (~0.98) are
comparable to those presented in the literature:

Main parametersAccuracyModel

Epochs= 50; Batch Size= 50; Optim. = Adam; LR = 10-

4; Loss = Binary crossentropy0.97ESIM model + word2vec (Lin et al., 2020) –
Chinese addresses

Epochs= 50; Batch Size= 8; Optim. = Adam; LR = 10-4;
Loss = Binary crossentropy

0.95ESIM model + pre-trained Glove (Ramani, K., &
Borrajo, D., 2023) – English addresses

Epochs= 20; Batch Size= 16; Optim. = AdamW; LR =
10-5; Loss = Contrastive Loss

0.96Siamese BERT (Duarte, A. V., & Oliveira, A. L.,
2023) – Portuguese addresses

However, generalization capability of the model to out-of-distribution
examples needs to be improved (hard training samples).

» 18

4. Conclusions and future work

Main conclusions:

• Preliminary results comparable to those presented in the literature as well as to
those obtained in a Python implementation.

Future work:

• Improve generalization capability;
• Run the model in a GPU environment for better performance;
• Include geographical coordinates as geohashes appended to address texts

(Guermazi et al. 2023) to cope with missing information;
• Adapt the model to multiclass classification to deal with partial matches.

» 19

References

• Cruz, P., Vanneschi, L., Painho, M., & Rita, P. (2021). Automatic identification of addresses: A
systematic literature review. ISPRS International Journal of Geo-Information, 11(1), 11

• Duarte, A. V., & Oliveira, A. L. (2023, September). Improving Address Matching Using Siamese
Transformer Networks. In EPIA Conference on Artificial Intelligence (pp. 413-425). Cham: Springer
Nature Switzerland

• Guermazi, Y., Sellami, S., & Boucelma, O. (2023, March). GeoRoBERTa: A Transformer-based Approach
for Semantic Address Matching. In 7th International workshop on Data Analytics solutions for Real-
LIfe APplications (DARLI-AP)

• Lin, Y., Kang, M., Wu, Y., Du, Q., & Liu, T. (2020). A deep learning architecture for semantic address
matching. International Journal of Geographical Information Science, 34(3), 559-576.

• Ramani, K., & Borrajo, D. (2023). Methods for matching English language addresses. Transactions in
GIS, 27(2), 347-363

» 20

«

«Semantic address matching using Keras
for R

https://hour.ine.pt/ Obrigada | Thank You

uRos2024, 27-29 November 2024

