New Data Sources and Official Statistics

An Exemplary Research Workflow in R Using Different API Wrapper Packages

```
Yannik Buhl,
Federal Statistical Office Germany (Destatis)
The Use of R in Official Statistics (uRos)
November 2024, Athens
```

New data sources in official statistics

Goals

- Official statistics need continuous development
- Main focus on reducing response burden
- Second goal: Make statistics more timely and precise

Examples at Destatis

- Data from AirBnB for tourism statistics
- Mobile Network Operator data for population statistics
- Satellite data for construction statistics

The example of pedestrian count data

Research idea

- Need for very timely data for high-street retail statistics
- Estimate most recent trends for economic statistics
- Rising digitisation in pedestrian counts

Pedestrian count data

- Working with German start-up company 'Hystreet'
- Count pedestrians on highstreets of many German cities (and beyond)
- Started cooperating during Covid-19
- Laser sensors count pedestrians passing

The example of pedestrian count data

Use-case requirements

- Create a variety of data products, updated weekly
- Deliver data products to stakeholders and customers
- Maintain some degree of data quality (experimental, though)
- Calculate pedestrian count index (German Federal Bank)
- Automate workflow

Why use R?

- API wrapper for 'Hystreet' data: {hystReet}
- API wrapper for Destatis's database: {restatis}
- Potential to output all formats needed (e.g., Excel, Graphs, databases, etc.)
- Easy way of automating scripts

Production process: Update workflow

Figure 1: Update data workflow

Production process: {hystReet}

```
df <- hystReet::get_hystreet_station_data(hystreetId = 148, # Limburg)</pre>
                                               query = list(from = "2024-11-01T00:00:00+01:00:00)
                                                             to = "2024 - 11 - 01T23 : 00 : 00 + 01 : 00 : 00",
                                                             resolution = "hour"),
 4
                                               API_token = Sys.getenv("HYSTREET_KEY")) %>%
            magrittr::extract2("measurements") %>%
 6
            rowwise() %>%
            filter(isFALSE(unverified)) %>%
            select(-c(min_temperature, unverified, collection_type, details))
10
11 head(as_tibble(df))
# A tibble: 6 × 4
             weather condition
                                           temperature pedestrians_count
  timestamp
  <dttm>
                      <chr>
                                                  <db1>
                                                                    <int>
1 2024-11-01 00:00:00 partly-cloudy-night
                                                    9.8
                                                                       23
2 2024-11-01 01:00:00 cloudy
                                                    8.5
                                                                       13
3 2024-11-01 02:00:00 cloudy
                                                   8.5
4 2024-11-01 03:00:00 cloudy
                                                   8.1
5 2024-11-01 04:00:00 cloudy
                                                   8.1
                                                                       11
6 2024-11-01 05:00:00 cloudy
                                                    8.1
                                                                       14
```

How do we put R in production?

Situation

- Weekly updates
- Weekly data exchanges
- Send and receive data
- Post-process and publish
- Few human resources

Solution

- Automate as far as possible
- Enable people not apt to work with R to do updates
- Steer them through the process
 (GUI style, e.g. w/ {svDialogs})
- Reliable production independent of acting staff

```
~ Starte Zeitparameter-Vergabe als Skript.
~ Bestimme die Zeitparameter automatisch.
~ Alter Datenstand detektiert: 20240930
~ Startparameter fuer Download: 2024-10-01T00:00:00+02:00:00
~ Neuer Datenstand definiert: 20241031
~ Endparameter fuer Download: 2024-10-31T23:00:00+02:00:00
> |
```

Figure 2: Console logging

Production process: R as CLI

- One step further: Integrating R with the command line
- R can work well used in, e.g., Bash scripts
- Rscript command available to run entire scripts
- Pass on any amount of parameters to the R script
 - '~\$ Rscript update-data.R 20241101 20241130'
 - Fetch with, e.g., base::commandArgs()

Production process: Data processing

Figure 3: Basic data processing workflow

Production process: {restatis}

```
df2 <- restatis::gen_table("45212-0004", # Internet retail index
                               startyear = 2023,
                               endyear = 2024,
                               classifyingvariable1 = "WERTE4", classifyingkey1 = "REAL",
 4
                               classifyingvariable2 = "WZ08E6", classifyingkey2 = "WZ08-4791")
          janitor::clean_names() %>%
 6
          select(statistics_code, statistics_label, time,
                 x1_variable_attribute_label, value, value_unit) %>%
          filter(value_unit == "%")
 9
10
11 head (df2)
# A tibble: 6 × 6
  statistics_code statistics_label time x1_variable_attribut...1 value value_unit
  <chr>
                  <chr>
                                   <chr> <chr>
                                                                 <chr> <chr>
                  Monthly statist... 2024 May
                                                                 -4.5 %
1 45212
                  Monthly statist... 2024 April
2 45212
                                                                 7.1
3 45212
                  Monthly statist... 2024 July
                                                                 3.4
4 45212
                  Monthly statist... 2024 June
                                                                 -5.3 %
                  Monthly statist... 2024 September
5 45212
                                                                 16.3 %
                  Monthly statist... 2023 January
6 45212
                                                                 -3.3 %
# i abbreviated name: 1x1_variable_attribute_label
```

Production process: Example results

Figure 4: Timeseries of indexes

Figure 5: Daily pedestrian count index (seasonally adjusted, cooperation with German Federal Bank)

Summary: Takeaways & room for improvement

Takeaways

- Importance of APIs for automation in experimental statistics
- If there is no API wrapper, write one
- Putting R in production is nice especially for 'smaller' tasks

Room for improvement

- Better automation (CronJob)
- Potentially automate retries in case of HTTP error 5xx
- Potential future use-case for {targets}

Thank you!

```
Get in touch
yannik.buhl /at/ destatis.de
yannikbuhl (GitHub)
```