An Exemplary Research Workflow 1n R
Using Different API Wrapper Packages

Yannik Buhl,
Federal Statistical Office Germany (Destatis)

The Use of R in Official Statistics (uRos)
November 2024, Athens

Goals Examples at Destatis

e Official statistics need e Data from AirBnB for tourism
continuous development statistics

e Main focus on reducing e Mobile Network Operator data
response burden for population statistics

e Second goal: Make statistics e« Satellite data for
more timely and precise construction statistics

Research 1idea Pedestrian count data

e Need for very timely data for e Working with German start-up

high-street retail statistics company ‘Hystreet’
e Estimate most recent trends e Count pedestrians on high-
for economic statistics streets of many German cities
. Rising digitisation in (and beyond)
pedestrian counts e Started cooperating during
Covid-19

e Laser sensors count
pedestrians passing

Use-case Why use R?

requlrements ‘ :
e API wrapper for °‘Hystreet

e Create a variety of data data:

products, updated weekly e API wrapper for Destatis’s

e Deliver data products to database:

stakeholders and customers e Potential to output all

e Maintain some degree of data formats needed (e.g., Excel,
quality (experimental, though) Graphs, databases, etc.)
e Calculate pedestrian count e Easy way of automating scripts

index (German Federal Bank)

e Automate workflow

https://github.com/JohannesFriedrich/hystReet
https://github.com/CorrelAid/restatis
https://github.com/JohannesFriedrich/hystReet
https://github.com/JohannesFriedrich/hystReet
https://github.com/CorrelAid/restatis
https://github.com/CorrelAid/restatis

Production process: Update workflow

Set target data timestamp
manually (Ul prompts)

Start update as CLI
(potentially CronJob)

Figure 1: Update data workflow

{svDialogs}

Start script via 'run' Auto-determine target
data timestamp
(last full month) — A
base::commandArgs +
/ Rscript

Check data for need of
update (3 resolutions)

Auto-determine MEZ/MESZ
for precise download

{hystReet}

Update hourly data]_\

Update daily data

—
¥/
Write data to disk with

new data timestamp

]_,'

Update monthly data

Detect
sensor outages

 —— to disk

T
—

Write outage info

~ @@

Production process: {hystReet}

1 df <- hystReet::get hystreet station data (hystreetId = 148, # Limburg
2 query = list(from = "2024-11-01T00:00:00+01:00:00
3 to = "2024-11-01T723:00:00+01:00:00",
4 resolution = "hour"),
5 API_ token = Sys.getenv ("HYSTREET KEY")) %>%
6 magrittr::extract2 ("measurements") %>%
7 rowwise () %>%

8 filter (1sFALSE (unverified)) %>%

9 select (-c(min_temperature, unverified, collection_ type, details))
10

11 head(as _tibble (df))
A tibble: 6 x 4

timestamp weather condition temperature pedestrians_count

<dttm> <chr> <db1l> <int>
1 2024-11-01 00:00:00 partly-cloudy-night 9.8 23
2 2024-11-01 01:00:00 cloudy 8.5 13
3 2024-11-01 02:00:00 cloudy 8.5 5
4 2024-11-01 03:00:00 cloudy 8.1 1
5 2024-11-01 04:00:00 cloudy 8.1 11
6 2024-11-01 05:00:00 cloudy 8.1 14

Situation Solution

e Weekly updates e Automate as far as possible

e Weekly data exchanges e Enable people not apt to work with

e Send and receive data R to do updates

e Steer them through the process
(GUI style, e.g. w/ {svDialogs})

e Reliable production independent of
acting staff

e Post-process and publish

e Few human resources

Figure 2: Console logging

One step further: Integrating R with the command 1line
R can work well used 1in, e.g., Bash scripts
Rscript command availlable to run entire scripts

Pass on any amount of parameters to the R script
» ‘~$ Rscript update-data.R 20241101 20241130’

» Fetch with, e.g., base::commandArgs()

Production process: Data processing

Remove values
with corrupt data

Create {ggplot2}
graphs for publication

restatis
{ is} Create CSVs tailored

for visualisation

Raw data Postprocessing scripts,
(hourly, daily, monthly) depending on target

\ Get population
data for weighing

Calculate (weighed)
indexes

Create specially tailored
XLSX as Dashboard metadata

,[Calculate change rates

Create files for
early GDP estimation

Figure 3: Basic data processing workflow

Production process: {restatis}

"WERTE4",
= "WZ0O8E6",

time,
value_unit)

x1 variable attribut..!?

1 df2 <- restatis::gen table("45212-0004",
2 startyear = 2023,
3 endyear = 2024,
4 classifyingvariablel
5 classifyingvariable?2
6 jJanitor::clean names () %>%
7 select (statistics code, statistics label,
8 x1 variable attribute label, wvalue,
9 filter(value unit == "$")
10
11 head(df2)
A tibble: 6 x 6
statistics code statistics label time
<chr> <chr> <chr> <chr>
1 45212 Monthly statist.. 2024 May
2 45212 Monthly statist.. 2024 April
3 45212 Monthly statist.. 2024 July
4 45212 Monthly statist.. 2024 June
5 45212 Monthly statist.. 2024 September
6 45212 Monthly statist.. 2023 January
=

1 abbreviated name:

1x1 variable attribute label

Internet retail index

classifyingkeyl =

classifyingkey?2

(o) (o)
©>%

value
<chr>

value unit

1 REAL 1 ,
"WZ08-4791")

10

Pedestrian count index vs. high street retail turnover index

250 -

200 -

Index value

—

100 : —-
¢

50 -

2020 2022 2024

Figure 4: Timeseries of 1ndexes

Index
Official statistics

—o— Pedestrian data

Passantenfrequenzindex ©®

Index, 2021 = 100, kalender- und saisonbereinigt

o - ™ ™/ T __ '’ 1 1T — 71
Juni 21 Apr. 22 Jan. 23 Nov. 23 Aug. 24

Febr.'19 Nov. '19 Sept. '20

~@- passantenfrequenzindex

Figure 5: Dailly pedestrian count index
(seasonally adjusted, cooperation with German

Federal Bank)

11

Takeaways

e Importance of APIs for
automation 1n experimental
statistics

e If there 1s no API wrapper,
write one

e Putting R 1n production 1s
nice especially for ‘smaller’
tasks

Room for improvement

e Better automation (CronlJob)

e Potentially automate retries
in case of HTTP error 5xx

e Potential future use-case for
{targets}

12

Get 1n touch
yvannik.buhl /at/ destatis.de

vannikbuhl (GitHub)

13

