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Motivation and Overview

The Industrial Sector

In general, industrial statistics are statistics re�ecting characteristics and

economic activities of the units engaged in a class of industrial activities

that are de�ned in terms of the International Standard Industrial

Classi�cation of All Economic Activities (ISIC)

(IRIS 2008)

The industrial sector corresponds to:

ISIC Revision 3 ISIC Revision 4

C Mining and quarrying B Mining and quarrying

D Manufacturing C Manufacturing

E Electricity, gas and water supply D Electricity, gas, steam and air condition-

ing supply

E Water supply; sewerage, waste manage-

ment and remediation activities
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Motivation and Overview

Divisions, Groups and Classes in Manufacturing:

Example

� Section C�Manufacturing

� Division 20�Manufacture of chemicals and chemical

products

� Group 201�Manufacture of basic chemicals, fertilizers
and nitrogen compounds, plastics and synthetic rubber in
primary forms

▶ 2011�Manufacture of basic chemicals
▶ 2012�Manufacture of fertilizers and nitrogen compounds
▶ 2013�Manufacture of plastics and synthetic rubber in

primary forms
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Motivation and Overview

Annual Industrial Survey in Oman: 2012-2019

� Data collected �rst in 2013-2014 with

reference year 2012

� Data collection continued (at least)

until 2019

� Statistical unit: establishment

� Scope: covered all large manufacturing

establishments licensed with the

Ministry of Commerce and Industry and

operating in the Sultanate of Oman.

� Large=employing 10 or more persons

engaged
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Motivation and Overview

� Initial frame: around 900 establishments

� Response - nearly 95% in terms of employment (701

establishments)

� The questionnaire:

▶ Following the �International Recommendations for

Industrial Statistics� of the United Nations
▶ Activity classi�cation: ISIC Revision 4
▶ Product classi�cation: CPC 2.0
▶ 8 pages, more that 300 �elds
▶ Data entry: at MOCI, by trained sta�, since 2019 online by

the establishments
▶ Strict formal validation
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Motivation and Overview

� Collected data still had some inconsistencies

▶ Stem from insu�cient understanding of the terms and

concepts applied
▶ There is a belief that information supplied would be

transmitted to the income tax authorities:hiding

information related to output and over-report on inputs.
▶ A number of establishments are engaged in several equally

important but dissimilar activities
▶ Di�culties providing data on consumption of electricity,

water and fuels separately; purchase of raw materials and

sales from own production by main product
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Motivation and Overview
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Motivation and Overview

The data set selected for the example:

� One 4-digit ISIC Revision 4 class: 2395="Articles of

concrete, cement and plaster", 84 establishments

� 6 variables

EMP Number of employees

COMP Gross wages and salaries paid to the employees

GO Gross Output

IC Intermediate consumption

EPV Electricity purchased (value)

WPV Water purchased (value)

� For 15 establishments there are missing values in at least

one variable

Note: Value Added (VA) = GO - IC
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Handling of outliers in establishment surveys

Outliers in Sample Surveys

� "Rule based" approach - identi�cation by data speci�c edit

rules developed by subject matter experts followed by

deletion and imputation ← strictly deterministic, ignore the

probabilistic component, extremely labor intensive

� Univariate methods - favored for their simplicity. These are

informal graphical methods like histograms, box plots, dot

plots; quartile methods to create allowable range for the

data; robust methods like medians, Winsorized means, etc.

� Multivariate methods - rarely used although most of the

business surveys collect multivariate qualitative data
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Handling of outliers in establishment surveys

The Challenges

� The methods must be able to work with moderate to large data sets

(hundreds of variables and tens of thousands of observations) -

therefore we consider computational speed a very important criterion

� Survey data often contain missing values, therefore the methods must

be able to work with incomplete data

� The survey data are often skewed - use appropriate transformations

(Raymaekers and Rousseeuw, 2021; Atkinson et al., 2024) or special

robust methods for skewed data (Hubert et al., 2008)

� The methods must be able to cope with the complex sample design of

a survey using sampling weights

Di�cult set-up: Large multivariate incomplete sample survey data
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Handling of outliers in establishment surveys

Outliers and Robustness

Outlier detection and Robust estimation are closely related

1. Robust estimation: �nd an estimate which is not in�uenced

by the presence of outliers in the sample

2. Outlier detection: �nd all outliers, which could distort the

estimate

� If we have a solution to the �rst problem we can identify

the outliers using robust residuals or distances

� If we know the outliers we can remove or downweight them

and use classical estimation methods

� For the purposes of o�cial statistics the second approach is

more appropriate
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Handling of outliers in establishment surveys

Example: Bush�re data

� A data set with 38 observations in 5 variables - Campbell

(1989)

� Contains satellite measurements on �ve frequency bands,

corresponding to each of 38 pixels

� Used to locate bush�re scars

� Very well studied (Maronna and Yohai, 1995; Maronna and

Zamar, 2002)

� 12 clear outliers: 33-38, 32, 7-11; 12 and 13 are suspect

� Available in the R package robustbase
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data

●●●
●

●
●

●
●● ● ● ●

●

●

●

●●●●●
●●

●

●

●● ●
● ●

●

●

●
●●●●●●

50 100 150 200

−
20

0
0

20
0

40
0

60
0

80
0

Bushfire data

V2

V
3

Todorov (UNIDO) Outlier detection in business surveys uRos 2024 17 / 59



Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data
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Handling of outliers in establishment surveys

Example: Bush�re data - Boxplots
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Handling of outliers in establishment surveys

Example: Bush�re data - Scatterplot matrix
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Handling of outliers in establishment surveys

General Framework for Multivariate Outliers

Two phases (Rocke and Woodru�, 1996)

1. Calculate Robust Distances

▶ Obtain robust estimates of location T and scatter C
▶ Calculate robust Mahalanobis-type distance

RDi =
√
((xi − T)tC−1(xi − T))

2. Cuto� point: Determine separation boundary Q.

Declare points with RDi > Q, i.e. points which are su�ciently far

from the robust center as outliers.

Usually Q = χ2

p(0.975) but see also Hardin and Rocke (2005),

Filzmoser, Garrett, and Reimann (2005), Cerioli, Riani, and Atkinson

(2008).
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Handling of outliers in establishment surveys

Outliers in Sample Surveys: Multivariate

methods

� Statistics Canada (Franklin et al., 2000) - Annual

Wholesale and Retail Trade Survey (AWRTS)

� The EUREDIT project of the EU (Charlton 2004)

� Todorov et al. (2011): R package rrcovNA

� Bill and Hulliger (2016): R package modi

� Wada et al. (2020): R packages RMSD and RMSDp

� D'Orazio (2023)

� Todorov (2024): The R Package Ecosystem for Robust

Statistics
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R packages: rrcovNA, modi, cellWise and OutliersO3

The modi package

� Bill and Hulliger (2016)

� Available at CRAN
▶ TRC - Transformed Rank Correlations - Béguin and

Hulliger (2004)
▶ EA - Epidemic Algorithm - Béguin and Hulliger (2004)
▶ BEM - Béguin and Hulliger (2008) - a combination of

BACON algorithm (Billor, Hadi and Vellemann 2000) and

EM

� Data set sepe: anonymized sample of a pilot survey on

environment protection expenditures of the Swiss private

economy (1993).

All three algorithms can handle sampling weights
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R packages: rrcovNA, modi, cellWise and OutliersO3

> library(modi)

> library(car)

> data(sepe)

> vlist <- c(3:5, 8:11, 14)

> colnames(sepe)[vlist]

[1] "totinvwp" "totinvwm" "totinvap" "totinvto"

[5] "totexpwp" "totexpwm" "totexpap" "totexpto"

> sepex <- recode(as.matrix(sepe), "0=NA")

> logsepe <- log(sepex[, vlist] + 1)

## decrease the cutoff quantile for good observations

n <- nrow(logsepe)

> res <- BEM(logsepe, sepe$weight, c0=5, alpha=0.01/n)

BEM has detected 89 outlier(s) in 3.12 0 3.2 NA NA seconds.

> res$cutpoint

[1] 37.14862
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R packages: rrcovNA, modi, cellWise and OutliersO3

> PlotMD(res$dist, ncol(logsepe), alpha=0.95)
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R packages: rrcovNA, modi, cellWise and OutliersO3

Handling of the detected outliers

> imp <- Winsimp(data, res$center, res$scatter, outind)

> sum(imp$imputed.data < 0)

[1] 99

original.mean mean.norm mean.before mean.after

totinvwp 0.71 0.73 0.79 0.87

totinvwm 0.47 0.56 0.72 0.71

totinvap 0.88 1.00 1.05 1.14

totinvto 1.51 1.81 1.69 1.92

totexpwp 0.99 1.05 1.07 1.09

totexpwm 1.53 1.62 1.46 1.70

totexpap 0.48 0.47 0.48 0.55

totexpto 2.01 2.12 1.98 2.21

Determinant 4.86 16.01 4.32 11.05

Table: Means and determinant of the covariance matrix for original,

normally imputed and robustly imputed after re-introduction of zeros

in di�erent steps
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R packages: rrcovNA, modi, cellWise and OutliersO3

The rrcovNA package

� Similar structure to rrcov: S4 classes with a number of

diagnostic and visualization functions

� Available at CRAN

� MCD, OGK, S - following an MVN imputation with an EM

algorithm

� Classical and robust PCA for incomplete data

� NEW

▶ Deterministic MCD DETMCD: Hubert et al. (2012)
▶ Deterministic S and MM estimates (DETS and DETMM):

Hubert et al. (2015)
▶ Generalized S estimates GSE: Danilov et al. (2012)
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Examples

Example 1: AIS (ISIC=2395)

> library(rrcovNA)

> cv <- CovNAMcd(ais); plot(cv, which="pairs")
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Examples

The example: AIS (ISIC=2395)

> library(rrcovNA)

> lcv <- CovNAMcd(log(ais)); plot(lcv, which="pairs")
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Examples

The example: AIS (ISIC=2395)

> (lcv <- CovNASest(log(ais), method="GSE"))

Call:

CovNASest(x = log(ais), method = "GSE")

-> Method: Generalized S-Estimator

Robust Estimate of Location:

[1] 3.6633 3.6335 -0.7825 11.5271 9.0910 7.6720 9.1587

Robust Estimate of Covariance:

PER EMP FEM GWS ECV WCV FUEL

PER 2.019 2.070 4.242 2.539 2.570 2.281 1.836

EMP 2.070 2.128 4.398 2.621 2.655 2.337 1.895

FEM 4.242 4.398 16.871 5.870 5.800 4.583 3.909

GWS 2.539 2.621 5.870 3.558 3.655 3.048 2.291

ECV 2.570 2.655 5.800 3.655 4.195 3.237 2.449

WCV 2.281 2.337 4.583 3.048 3.237 3.878 1.945

FUEL 1.836 1.895 3.909 2.291 2.449 1.945 3.301
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Examples

The example: AIS (ISIC=2395)

> plot(lcv, which="dd")
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Examples

The example: AIS (ISIC=2395)

> plot(lcv, which="xydistance")

Distance Plot
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Examples

AIS (ISIC=2395): the in�uence of the variables

� Observation 5: has very high share of value added in gross

output (VA/GO), more than 90% and at the same time

very low electricity consumption

� Observation 60: has very low wages per employee

(WS/EMP) as well as very low electricity consumption

(compared to output)

� Observations 71: has very low value added per employee

(VA/EMP) and very low electricity consumption (compared

to output)

� . . .

Note: Value Added (VA) = GO - IC
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Examples

The example: AIS (ISIC=2395)

> plot(lcv, which="Fdist")
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QQ−Plot of Mahalanobis distances vs. F−distribution

alpha= 0.975 , hmed= 7.05 , halpha= 4.581  n.miss.dist= 15
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Examples

Detecting Deviating Data Cells (DDC)

Detecting Deviating Data Cells (Rousseeuw and Van Den Bossche, 2018):

functions DDC() and cellMap() in package cellWise

� Often many rows have a few contaminated cell values: may not be

visible by looking at each variable (column) separately (Alqallaf, et al.,

2009).

� Preprocessing and standardizing (robustly) the data; Apply univariate

outlier detection and �ag outlying cells

� Find connected variables (with strong robustly computed bivariate

correlation)

� Compute predicted values for all cells and using these predictions

compute the standardized cell residuals

� Flag cell-wise outliers

� Flag row-wise outliers
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Examples

AIS (ISIC=2395): cellMap (package cellWise)
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Examples

Visualizing multivariate outliers

Outliers on di�erent dimensions of a dataset

� Look �rst at the lower dimensions, checking the individual variables

�rst, then pairs of variables, then possibly sets of three...

� How to summarise and visualise this information to support analysis?

� A new visualisation tool, the O3 plot in the R package OutliersO3

� The methods used are: HDoutliers (HDoutliers package), mvBACON

in robustX, adjOutlyingness and covMcd both in robustbase,

FastPCS in FastPCS and DDC in cellWise

� Display outlyingness using two or more methods simultaneously
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Examples

Overview Of Outliers (package OutliersO3)

EM
P

GO EPV
W

PV
   X57 X78 X8 X36 X5 X35 X71

Outliers identified by MCD at tolerance 0.01
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Examples

Parallel Coordinates plot

EMP GO EPV WPV

Cases ever found to be outliers by  MCD  for tol= 0.01
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Examples

Overview Of Outliers (package OutliersO3)

W
PV

EM
P

GO EPV
   X13 X68 X50 X6 X66 X32 X4 X31 X61

Outliers identified by DDC MCD both
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Examples

Example 2: Bush�re data

Simple experiment with the Bush�re data

� 12 outliers: 33-38, 32, 7-11; 12 and 13 are suspect

� Missing values added with an MCAR mechanism

� Created 4 data sets: with 10%, 20%, 30% and 40% missing

data

� For each method and data set the known outliers are

indicated as detected or not

� Non-outliers that were classi�ed as outliers, or swamped

non-outliers are given too (FP=false positives)
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Examples

� Repeat m = 100 times for each method and missingness rate

� Average the number of non-identi�ed outliers and the number of

regular observations declared outliers

Average percentage of outliers that were not identi�ed

0 10 20 30 40

MCD 0.00 3.46 9.46 18.15 28.69

DETMCD 0.00 1.62 5.85 12.85 24.62

S 0.00 36.46 54.38 64.77 77.77

DETS 0.00 15.46 31.77 52.15 68.23

GSE 0.00 4.00 10.85 15.46 31.46

BEM 7.69 10.08 11.31 11.92 13.92

Average percentage of non-outliers that were classi�ed as outliers

0 10 20 30 40

MCD 12.00 4.28 2.84 2.44 2.08

DETMCD 12.00 3.92 1.92 1.60 1.16

S 0.00 2.48 2.80 2.12 1.44

DETS 0.00 0.16 0.56 1.44 1.08

GSE 0.00 2.00 3.40 2.12 2.92

BEM 4.00 4.76 4.24 6.12 6.88
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Simulation study - SBS DATA

Simulation study:

Austrian Structural Business Statistics Data

� In Todorov et al. (2011) we evaluated di�erent outlier detection algorithms on

generated synthetic (but close-to-reality) data sets based on a real structural

business statistics data set.

� The following algorithms were compared:

▶ MCD, S, OGK, SIGN1 from package rrcovNA
▶ TRC, EA and BEM from package modi

� For an outlier fraction of 10% all estimators except EA perform excellent in terms

of outlier error rate (FN) and identify all outliers independently of the percentage

of missing values

� The average percentage of non-outliers that were declared outliers (FP) di�er and

BEM performs best, followed closely by S, MCD, SIGN1 and SDE (below 3%).

� Now we will evaluate the deterministic MCD (DETMCD), deterministic S (DETS)

and generalized S (GSE), under the same conditions.
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Simulation study - SBS DATA

Austrian Structural Business Statistics Data

� More than 320.000 enterprizes. Available raw data set: 21669 observations in 90

variables, structured according NACE revision 1.1 with 3891 missing values

� We investigate the following 10 variables of NACE 52.42 - "Retail sale of clothing"

TURNOVER Total turnover

B31 Number of white-collar employees

B41 Number of blue-collar workers

B23 Part-time employees

EMP Number of employees

A1 Wages

A2 Salaries

A6 Supply of trade goods for resale

A25 Intermediate inputs

E2 Revenues from retail sales
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Simulation study - SBS DATA

Synthetic SBS data, NACE 5244

Missing value patterns

analyzed with

the R package VIM.

Data matrix Plot:

� Missing values are

red colored

� The darker a line
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Simulation study - SBS DATA

Synthetic SBS data, NACE 5244

Missing value patterns

analyzed with

the R package VIM.
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Simulation study - SBS DATA

Synthetic SBS data, NACE 5244

Umsatz B31 B41 B23 a1 a2 a6 a25 e2 Besch

Parallel Coordinate

Plot:

� Observations with

Missing values in EMP

are red colored

� → MAR situation.
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Simulation study - SBS DATA

Synthetic SBS data, NACE 5244

Umsatz B31 B41 B23 a1 a2 a6 a25 e2 Besch

Parallel Coordinate

Plot:

� Observations with

Missing values in EMP

are red colored

� → MAR situation.
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Simulation study - SBS DATA

Simulation Setup I

Simulation settings

� Log-normal data generated according to the structure

(T,C) and size of the original data.

� Two experiments:

1. Fixed fraction of outliers = 0.1 and missing rates =

0.0, . . . , 0.3 with step 0.025

2. Fixed missing rate = 0.1 and fractions of outliers =

0.0, . . . ..., 0.25 with step 0.025

� Methods: MCD and S (as a benchmark), DETMCD,

DETS, GSE.

� m=400 repeated for all data sets and methods
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Simulation study - SBS DATA

Simulation Setup II

We compare

� The average percentage of false negatives (FN) - the

outliers that were not identi�ed, or masked outliers (outlier

error rate)

� The average percentage of false positives (FP) -

non-outliers that were classi�ed as outliers, or swamped

non-outliers (inlier error rate)

� Average computation time
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Simulation study - SBS DATA

Simulation results I
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� All methods perform

excellent and

identify all outliers
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Simulation study - SBS DATA

Simulation results II
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� All methods perform

well (less than 3%)

� GSE performs best

followed by SDET

(below 1%).
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Simulation study - SBS DATA

Simulation results III
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� Again nothing to

compare: all

estimators identify

all outliers.
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Simulation study - SBS DATA

Simulation results IV
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� False Positives (FP)

or inlier error rate

� Fixed missingness

rate: 10%

� Varying fraction of

outliers

� In terms of

non-outlier error rate

GSE and SDET

perform best

(uniformly less than

3%) followed by the

rest (less than 4%).
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Summary and Conclusions

Conclusions and Outlook

� We considered methods for identi�cation of outliers in large

multivariate incomplete establishment survey data

� Two previous studies were reviewed, new methods and their

implementation in R were presented: DETMCD, SDET and GSE

� The methods were compared in terms of identi�cation performance on

examples and simulation study based on real data

� Several R packages were presented: modi, rrcov, cellWise and

OutlierO3 and illustrated on real data examples.

� Outlook

▶ Sampling weights for MCD and S estimators.
▶ What to do after the outliers are found? ⇒ Development of

a practical procedure for handling of multivariate outliers.
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